Boundary layer Viscous Flow of Nanofluids and Heat Transfer Over a Nonlinearly Isothermal Stretching Sheet in the Presence of Heat Generation/Absorption and Slip Boundary Conditions
نویسندگان
چکیده مقاله:
The steady two-dimensional flow of a viscous nanofluid of magnetohydrodynamic (MHD) flow and heattransfer characteristics for the boundary layer flow over a nonlinear stretching sheet is considered. Theflow is caused by a nonlinear stretching sheet with effects of velocity, temperature and concentrationslips. Problem formulation is developed in the presence of heat generation/absorption andsuction/injection parameters on non-linear stretching sheet. The resulting governing equations areconverted into a system of nonlinear ordinary differential equations by applying a suitable similaritytransformation and then solved numerically using Keller-Box technique. Convergences of the derivedsolutions are studied. The effects of the different parameters on the velocity, temperature, andconcentration profiles are shown and discussed. Numerical values of local skin-friction coefficient, localNusselt number and Sherwood number are tabulated. It is found that the velocity profiles decreases,temperature and concentration profiles increases with increasing of velocity slip parameter, and thethermal boundary layer thickness increases with increasing of Brownian motion and thermophoresisparameters.
منابع مشابه
MHD Boundary Layer Flow and Heat Transfer of Newtonian Nanofluids over a Stretching Sheet with Variable Velocity and Temperature Distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (UW=cXβ) and the wall temperature distribution of the form (TW=T∞+aXr ) for the steady magnetohydrodynamic (MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
متن کاملMHD boundary layer flow and heat transfer of Newtonian nanofluids over a stretching sheet with variable velocity and temperature distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (Uw=CXβ) and the wall temperature distribution of the form (Tw= T∞+ axr) for the steady magnetohydrodynamic(MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
متن کاملThree-Dimensional Boundary Layer Flow and Heat Transfer of a Dusty Fluid Towards a Stretching Sheet with Convective Boundary Conditions
The steady three-dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions is investigated by using similarity solution approach. The free stream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are reduced into ordinary differential equations b...
متن کاملEffect of magnetic field on the boundary layer flow, heat, and mass transfer of nanofluids over a stretching cylinder
The effect of a transverse magnetic field on the boundary layer flow and heat transfer of anisothermal stretching cylinder is analyzed. The governing partial differential equations for themagnetohydrodynamic, temperature, and concentration boundary layers are transformed into a setof ordinary differential equations using similarity transformations. The obtained ordinarydifferential equations ar...
متن کاملNumerical Simulation of MHD Boundary Layer Stagnation Flow of Nanofluid over a Stretching Sheet with Slip and Convective Boundary Conditions
An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...
متن کاملBoundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid
The steady boundary layer flow and heat transfer of a nanofluid past a nonlinearly permeable stretching/shrinking sheet is numerically studied. The governing partial differential equations are reduced into a system of ordinary differential equations using a similarity transformation, which are then solved numerically using a shooting method. The local Nusselt number and the local Sherwood numbe...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 12 شماره 4
صفحات 251- 268
تاریخ انتشار 2016-11-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023